真実的なProfessional-Data-Engineer試験対応 &合格スムーズProfessional-Data-Engineer技術問題 |素晴らしいProfessional-Data-Engineer関連試験
P.S.ShikenPASSがGoogle Driveで共有している無料の2025 Google Professional-Data-Engineerダンプ:https://drive.google.com/open?id=1MxN1fWtRYVUrkVZk6N8s7CZ2zeydmKUy
このような驚くべきデータを疑うかもしれませんが、この業界では想像もできません。しかし、当社のProfessional-Data-Engineer試験問題は合格しました。 Professional-Data-Engineer学習教材のパフォーマンスにどれだけの努力を注ぎ、どれだけ重視するかを想像できます。 99%の合格率を使用して、Professional-Data-Engineer練習教材が試験に合格して夢を実現するのに役立つことを証明しています。 Professional-Data-Engineer試験問題で確実に合格するすべての顧客を保証するため、ほとんどの受験者はProfessional-Data-Engineerガイド資料に情熱を示しています。
Google Professional-Data-Engineer認定試験は、かなりの量の準備が必要な厳格な試験です。候補者は、ビッグデータソリューションを扱う豊富な経験を持ち、データ処理と分析の最新の傾向に精通している必要があります。この認定は業界で高く評価されており、新しいキャリアの機会とより高い給与につながる可能性があります。
Google Professional-Data-Engineer認定は、業界で非常に高く評価されています。保持者がGoogle Cloud Platform上でデータソリューションを設計および実装するスキルと知識を持っていることを示します。認定は、特にBig Dataに取り組むことを目指す人にとって重要であり、Google Cloud Platformは主要なBig Dataソリューションのプロバイダーの1つです。
Google Professional-Data-Engineer試験は、データ技術での作業経験があり、Google Cloud Platform上でデータソリューションを設計および実装する専門家のために設計されています。試験は、Google Cloud Storage、Google BigQuery、Google Cloud Dataflowなどのさまざまなデータエンジニアリングツールと技術に関する候補者の知識をテストするように設計されています。
>> Professional-Data-Engineer試験対応 <<
試験の準備方法-効率的なProfessional-Data-Engineer試験対応試験-正確的なProfessional-Data-Engineer技術問題
21世紀の情報化時代の急流の到来につれて、人々はこの時代に適応できるようにいつも自分の知識を増加していてますが、まだずっと足りないです。IT業種について言えば、GoogleのProfessional-Data-Engineer認定試験はIT業種で欠くことができない認証ですから、この試験に合格するのはとても必要です。この試験が難しいですから、試験に合格すれば国際的に認証され、受け入れられることができます。そうすると、美しい未来と高給をもらう仕事を持てるようになります。ShikenPASSというサイトは世界で最も信頼できるIT認証トレーニング資料を持っていますから、ShikenPASSを利用したらあなたがずっと期待している夢を実現することができるようになります。100パーセントの合格率を保証しますから、GoogleのProfessional-Data-Engineer認定試験を受ける受験生のあなたはまだ何を待っているのですか。速くShikenPASSというサイトをクリックしてください。
Google Certified Professional Data Engineer Exam 認定 Professional-Data-Engineer 試験問題 (Q117-Q122):
質問 # 117
Case Study 1 - Flowlogistic
Company Overview
Flowlogistic is a leading logistics and supply chain provider. They help businesses throughout the world manage their resources and transport them to their final destination. The company has grown rapidly, expanding their offerings to include rail, truck, aircraft, and oceanic shipping.
Company Background
The company started as a regional trucking company, and then expanded into other logistics market.
Because they have not updated their infrastructure, managing and tracking orders and shipments has become a bottleneck. To improve operations, Flowlogistic developed proprietary technology for tracking shipments in real time at the parcel level. However, they are unable to deploy it because their technology stack, based on Apache Kafka, cannot support the processing volume. In addition, Flowlogistic wants to further analyze their orders and shipments to determine how best to deploy their resources.
Solution Concept
Flowlogistic wants to implement two concepts using the cloud:
* Use their proprietary technology in a real-time inventory-tracking system that indicates the location of their loads
* Perform analytics on all their orders and shipment logs, which contain both structured and unstructured data, to determine how best to deploy resources, which markets to expand info. They also want to use predictive analytics to learn earlier when a shipment will be delayed.
Existing Technical Environment
Flowlogistic architecture resides in a single data center:
* Databases
8 physical servers in 2 clusters
- SQL Server - user data, inventory, static data
3 physical servers
- Cassandra - metadata, tracking messages
10 Kafka servers - tracking message aggregation and batch insert
* Application servers - customer front end, middleware for order/customs
60 virtual machines across 20 physical servers
- Tomcat - Java services
- Nginx - static content
- Batch servers
* Storage appliances
- iSCSI for virtual machine (VM) hosts
- Fibre Channel storage area network (FC SAN) - SQL server storage
- Network-attached storage (NAS) image storage, logs, backups
* 10 Apache Hadoop /Spark servers
- Core Data Lake
- Data analysis workloads
* 20 miscellaneous servers
- Jenkins, monitoring, bastion hosts,
Business Requirements
* Build a reliable and reproducible environment with scaled panty of production.
* Aggregate data in a centralized Data Lake for analysis
* Use historical data to perform predictive analytics on future shipments
* Accurately track every shipment worldwide using proprietary technology
* Improve business agility and speed of innovation through rapid provisioning of new resources
* Analyze and optimize architecture for performance in the cloud
* Migrate fully to the cloud if all other requirements are met
Technical Requirements
* Handle both streaming and batch data
* Migrate existing Hadoop workloads
* Ensure architecture is scalable and elastic to meet the changing demands of the company.
* Use managed services whenever possible
* Encrypt data flight and at rest
* Connect a VPN between the production data center and cloud environment SEO Statement We have grown so quickly that our inability to upgrade our infrastructure is really hampering further growth and efficiency. We are efficient at moving shipments around the world, but we are inefficient at moving data around.
We need to organize our information so we can more easily understand where our customers are and what they are shipping.
CTO Statement
IT has never been a priority for us, so as our data has grown, we have not invested enough in our technology. I have a good staff to manage IT, but they are so busy managing our infrastructure that I cannot get them to do the things that really matter, such as organizing our data, building the analytics, and figuring out how to implement the CFO' s tracking technology.
CFO Statement
Part of our competitive advantage is that we penalize ourselves for late shipments and deliveries. Knowing where out shipments are at all times has a direct correlation to our bottom line and profitability. Additionally, I don't want to commit capital to building out a server environment.
Flowlogistic is rolling out their real-time inventory tracking system. The tracking devices will all send package-tracking messages, which will now go to a single Google Cloud Pub/Sub topic instead of the Apache Kafka cluster. A subscriber application will then process the messages for real-time reporting and store them in Google BigQuery for historical analysis. You want to ensure the package data can be analyzed over time.
Which approach should you take?
正解:C
質問 # 118
Which of these statements about BigQuery caching is true?
正解:B
解説:
When query results are retrieved from a cached results table, you are not charged for the query. BigQuery caches query results for 24 hours, not 48 hours. Query results are not cached if you specify a destination table. A query's results are always cached except under certain conditions, such as if you specify a destination table.
Reference: https://cloud.google.com/bigquery/querying-data#query-caching
質問 # 119
You are selecting services to write and transform JSON messages from Cloud Pub/Sub to BigQuery for a
data pipeline on Google Cloud. You want to minimize service costs. You also want to monitor and
accommodate input data volume that will vary in size with minimal manual intervention. What should you
do?
正解:C
質問 # 120
An online retailer has built their current application on Google App Engine. A new initiative at the company mandates that they extend their application to allow their customers to transact directly via the application.
They need to manage their shopping transactions and analyze combined data from multiple datasets using a business intelligence (BI) tool. They want to use only a single database for this purpose. Which Google Cloud database should they choose?
正解:C
解説:
ference: https://cloud.google.com/solutions/business-intelligence/
質問 # 121
You are implementing workflow pipeline scheduling using open source-based tools and Google Kubernetes Engine (GKE). You want to use a Google managed service to simplify and automate the task. You also want to accommodate Shared VPC networking considerations. What should you do?
正解:D
解説:
Shared VPC requires that you designate a host project to which networks and subnetworks belong and a service project, which is attached to the host project. When Cloud Composer participates in a Shared VPC, the Cloud Composer environment is in the service project. Reference: https://cloud.google.com/composer/docs/how-to/managing/configuring-shared-vpc
質問 # 122
......
Professional-Data-Engineer学習教材の試用版を無料でダウンロードできます。 Professional-Data-Engineer学習教材の試用版を使用した後、Professional-Data-Engineerトレーニングエンジンの利点をより深く理解できると思います。社会の発展により、Professional-Data-Engineer学習教材を進歩させて使用し、より速く進歩し、この時代のリーダーになるように促しています。必要なのは、最高の試験準備資料です。私たちのProfessional-Data-Engineer試験シミュレーションは、より良い未来にあなたを連れて行きます。
Professional-Data-Engineer技術問題: https://www.shikenpass.com/Professional-Data-Engineer-shiken.html
P.S. ShikenPASSがGoogle Driveで共有している無料かつ新しいProfessional-Data-Engineerダンプ:https://drive.google.com/open?id=1MxN1fWtRYVUrkVZk6N8s7CZ2zeydmKUy
Course Enrolled
Course Completed